用户名或电子邮箱地址
密码
记住我
Added by 20160508 on 2020-05-28
Added by 22170644 4 年 ago
69 Views7 Comments0 Likes
互评量表
Added by 22170645 4 年 ago
114 Views6 Comments0 Likes
Added by 22170601 4 年 ago
88 Views6 Comments0 Likes
Added by 22170619 4 年 ago
72 Views6 Comments0 Likes
优点:
1.重点讲解了平方差公式的代数证明,并验证平方差公式揭示的几何图形面积的等量关系
2.对平方差公式的应用进行本质的总结
缺点:
1.平方差引入的时候应当让同学们经历多项式运算的过程,并引导学生观察为何右端结果的变化由四项变成了两项!
2.几何意义应当给出割补图形,这部分讲解的板书十分不规范!应当做成动画
3.总结的部分举的例子应该精当一点
1.给了平方差公式的代数证明和几何证明,教学程序连贯完整
2.帮助学生区分了平方的差和差的平方的区别这些易错点
1.从多项式到平方差的过渡有点生硬;说明几何意义的板书可以采用不同颜色的粉笔进行说明
2.总结时的例子不太规范,可以在斟酌一下
优点:1.采用数形结合方法证明,使学生认知结构更完备。
2.运用PPT比较鲜明地给出定义中的重点词。
3.比较平方差和差的平方,能够让学生在今后解决问题中更加关注到这点。
缺点:引入的例子可以不先给出答案,黑板作图不太美观。
1、讲课前做好了学情分析,知道学生知道能够接受什么不能接受什么。在证明的过程中选择性地从式子的左端推导到右端。
2、将平方差的概念和差的平方这两个易混淆的概念进行了辨析,这也是学生容易搞混的地方。
3、在给出一种几何的证明之后,引导学生探索其他的证明方式。
1、开始的求多项式的乘法可以让学生自行操作,在展开的过程中探索从四项到两项的原因。
2、平方差的几何意义可以通过PPT展示。
3、最后例题的选取可以借鉴魏敏同学的做法,更具有针对性。
1.对于课标的把握比较到位,重难点突出
2.说明了平方差和平方的差的区别,注重细节,把握学生的认知规律
3.几何证明后引导学生思考其他方法,拓展了学生的思维
1.最后的题目选取两个常数那里有些生硬
优点
1.PPT概念呈现标注突出关键字非常好
2.着重解释平方的差而不是差的平方,有区分很好
3.讲解中运用数形结合思想让平方差公式具体化,讲解中也注意了切割的多样性,留给学生思考空间
缺点
1.多注意与学生眼神交流
2.和、差是可换位置的,表述时注意
3.可以用多媒体呈现几何意义,更生动
1,由多项式乘法丛书的角度推导出平方差公式,从旧的知识出发讲解新的知识,有助于学生理解
2,利用割补法从形的角度推到证明了平方差公式,形象直观
3,给出了平方差公式的变式以及用勇士的注意事项
有点紧张,语言的表达有些不准确
对于平方差公式中的a,b可以更多的强调是式子而并非仅仅是数
优点:
1.重点讲解了平方差公式的代数证明,并验证平方差公式揭示的几何图形面积的等量关系
2.对平方差公式的应用进行本质的总结
缺点:
1.平方差引入的时候应当让同学们经历多项式运算的过程,并引导学生观察为何右端结果的变化由四项变成了两项!
2.几何意义应当给出割补图形,这部分讲解的板书十分不规范!应当做成动画
3.总结的部分举的例子应该精当一点
优点:
1.给了平方差公式的代数证明和几何证明,教学程序连贯完整
2.帮助学生区分了平方的差和差的平方的区别这些易错点
缺点:
1.从多项式到平方差的过渡有点生硬;说明几何意义的板书可以采用不同颜色的粉笔进行说明
2.总结时的例子不太规范,可以在斟酌一下
优点:1.采用数形结合方法证明,使学生认知结构更完备。
2.运用PPT比较鲜明地给出定义中的重点词。
3.比较平方差和差的平方,能够让学生在今后解决问题中更加关注到这点。
缺点:引入的例子可以不先给出答案,黑板作图不太美观。
优点:
1、讲课前做好了学情分析,知道学生知道能够接受什么不能接受什么。在证明的过程中选择性地从式子的左端推导到右端。
2、将平方差的概念和差的平方这两个易混淆的概念进行了辨析,这也是学生容易搞混的地方。
3、在给出一种几何的证明之后,引导学生探索其他的证明方式。
缺点:
1、开始的求多项式的乘法可以让学生自行操作,在展开的过程中探索从四项到两项的原因。
2、平方差的几何意义可以通过PPT展示。
3、最后例题的选取可以借鉴魏敏同学的做法,更具有针对性。
优点:
1.对于课标的把握比较到位,重难点突出
2.说明了平方差和平方的差的区别,注重细节,把握学生的认知规律
3.几何证明后引导学生思考其他方法,拓展了学生的思维
缺点:
1.最后的题目选取两个常数那里有些生硬
优点
1.PPT概念呈现标注突出关键字非常好
2.着重解释平方的差而不是差的平方,有区分很好
3.讲解中运用数形结合思想让平方差公式具体化,讲解中也注意了切割的多样性,留给学生思考空间
缺点
1.多注意与学生眼神交流
2.和、差是可换位置的,表述时注意
3.可以用多媒体呈现几何意义,更生动
优点:
1,由多项式乘法丛书的角度推导出平方差公式,从旧的知识出发讲解新的知识,有助于学生理解
2,利用割补法从形的角度推到证明了平方差公式,形象直观
3,给出了平方差公式的变式以及用勇士的注意事项
缺点:
有点紧张,语言的表达有些不准确
对于平方差公式中的a,b可以更多的强调是式子而并非仅仅是数